There is a very simple argument that shows that MDS and PCA achieve the same results.

This argument has 2 important components. The first of these shows that an eigendecomposition of a gram matrix can be used for dimension-reduction.

PCA leverages the singular value decomposition (SVD). Given a matrix $ X $, the SVD is $ X = USV^{T} $.

We drop columns from X by using $ US_{t} $ where we drop some rows and columns from S.

This is also conviently obtained using an eigendecomposition of the covariance matrix.

Working with the gram matrix, we have $ XX^{T} $ and when expressed in terms of $ U $, $ S $ and $ V $, we have $ XX^{T} $ = $ (USV^{T})(VSU^{T}) $.

Simple algebra tells us that this is equal to $ US^{2}U^{T} $. The spectral theorem tells us that this the eigendecomposition of the gram matrix will return this decomposition. $ U $ and $ S $ can be retrieved and a dataset with fewer dimensions can be obtained.

The second part of the argument involves proving that a matrix of distances is indeed a gram matrix. This argument was discussed in a previous post.

In a previous post, I described the MDS (multidimensional scaling) algorithm. This algorithm operates on a proximity matrix which is a matrix of distances between the points in a dataset. From this matrix, a configuration of points is retrieved in a lower dimension.

The MDS strategy is:

- We have a matrix $ D $ for distances between points in the data. This matrix is
*symmetric*.
- We express distances as dot-products (using a proof from Schonberg). This means that $ D $ is expressed as $ X^T X $. (Observe that $ X^T X $ is a matrix of dot-products).
- Once we have $ X^T X $, dimension reduction is trivial. Running an eigendecomposition on this matrix will produced centered coordinates. The low-dimension embedding is recovered by discarding eigenvalues (eigenvectors).

Thus, assuming that we work with *euclidean distances* between points, we retrieve an embedding that PCA itself would produce. Thus, **MDS with euclidean distances is identical to PCA**.

Then what exactly is the value of running MDS on a dataset?

First, the PCA is not the most powerful approach. For certain datasets, euclidean distances do not capture the shape of the underlying manifold. Running the steps of the MDS on a different distance matrix (at least one that doesn’t contain euclidean distances) can lead to better results - a technique that the Isomap algorithm exploits.

Second, the PCA requires a vector-representation for points. In several situations, the objects in the dataset are not points in a metric space (like strings). We can retrieve distances between objects (say edit-distance for strings) and then obtain a vector-representation for the objects using MDS.

In the next blog post, I will describe and implement the Isomap algorithm that leverages the ideas in the MDS strategy. Isomap constructs a distance matrix that attempts to do a better job at recovering the underlying manifold.

**PROOFS:**